
SMAesH: technical documentation
Masked Hardware AES-128 Encryption with HPC

SIMPLE-Crypto

Contents

1 Overview 1

2 History 2

3 Features 2

4 Core User Guide 2
4.1 SVRS protocol . 4
4.2 Core Usage . 5
4.3 Sharing encoding . 7

5 Core Architecture 7
5.1 Masked AES Core Architecture . 8
5.2 Architecture of the MSKaes 32bits state datapath module 10
5.3 Architecture of the MSKaes 32bits key datapath module 13
5.4 Internal operation . 13
5.5 Randomness Generation . 16

6 Core Performances 22

7 Core Verification 22

8 Copyright 23

1 Overview

This document describes SIMPLE-Crypto’s Masked AES in Hardware (SMAesH), im-
plemented in the aes enc128 32bits hpc2 hardware IP.

1

2 History

1.1.0 (2024-09-02) 4 cycles Canright Sbox (new optimised architecture).

1.0.1 (2023-06-15) Fix latency in Section 5.4 (documentation change only).

1.0.0 (2023-05-01) Initial release.

3 Features

The AES-128 HPC2 module is a masked hardware implementation of the AES-128 en-
cryption algorithm as specified in [NIS01].

• The core implements the AES-128 encrypt function.

• The implementation is protected against side-channel attacks using a combination
of HPC1 [CGLS21] and HPC3 [KM22] masking scheme.

• The amount of shares d ≥ 2 can be chosen at synthesis time.1

• The randomness required for the masking scheme is internally generated using an
embedded PRNG.

• The core is controlled through three simple valid-ready stream interfaces (input
data/key, output data and PRNG seed.

• The core has an encryption latency of 86 clock cycles and a throughput of one
128-bit block of data per 86 clock cycles.

• There is no latency penalty for key change.

• The state of the core is automatically cleared when encryption finishes.

4 Core User Guide

A top-level view of the core is shown in Figure 7 and a detailed list of the ports is
given in Table 1. The interface is composed of three independent interfaces: the input
composed of the plaintext and the key (in red), the ciphertext output (in blue) and
the PRNG seed (in green). The key (in shares key), plaintext (in shares plaintext)
and ciphertext (out shares ciphertext) are all 128-bit masked values. The internal
PRNG seed (in seed) is 80-bit wide.
In this section we next detail the operation of the Synchronous Valid-Ready Stream

(SVRS) protocol for the data interfaces, the operation of the aes enc128 32bits hpc2

core, and the masked data encoding.

1While feasible, the architecture of the S-box is optimised and automatically generated for a given
amount of shares. Therefore, changing the amount of share without re-generating the S-box may
lead to suboptimal results. See 5.1 for more details.

2

Module Generics

Parameter Value Type Description

d integer Amount of shares
PRNG MAX UNROLL integer Maximum unrolling for the embedded

PRNG.

Module Ports

Ports Name Type Direction Width [bits] Description

clk clock input 1 Clock (all the logic is synchronized on the
positive edge).

syn rst control input 1 Active high synchronous reset. Keep as-
serted for at least one cycle.

SVRS Input interface
in shares plaintext data input 128d Shared plaintext (SVRS data signal).

in shares key data input 128d Shared key (SVRS data signal).
in valid control input 1 SVRS valid signal.
in ready control output 1 SVRS ready signal.

SVRS Seed interface
in seed data input 80 Fresh randomness used as a seed by the

embedded PRNG (SVRS data signal).
in seed valid control input 1 SVRS valid signal.
in seed ready control output 1 SVRS ready signal.

SVRS Output interface
out shares ciphertext data output 128d Shared ciphertext (SVRS data signal).

out valid control output 1 SVRS valid signal.
out ready control input 1 SVRS valid signal.

Table 1: aes enc128 32bits hpc2 port description.

3

aes enc128 32bits hpc2

in valid

in ready

in shares plaintext[128d-1:0]

in shares key[128d-1:0]

in seed valid

in seed ready

in seed[79:0]

out valid

out ready

out shares ciphertext[128d-1:0]

clk syn rst

Figure 1: Top level view of module aes enc128 32bits hpc2.

clock

data

valid

ready

Figure 2: SVRS transaction (don’t care (X) signals are represented with a flat red solid
line).

4.1 SVRS protocol

The Synchronous Valid-Ready Stream (SVRS) protocol operates between a sender and
a receiver. The bus is composed of the two control signals valid and ready, as well as
any number of data wires. The valid and data signals are outputs (resp. inputs) of the
sender (resp. receiver), while the ready signal is an input (resp. output) of the sender
(resp. receiver).
The bus operates synchronously with an event source shared by the sender and the

receiver (here, the positive edges of the clock). At each event, a transaction occurs if

clock

data

valid

ready

Figure 3: Multiple SVRS transactions.

4

both valid and ready are asserted (i.e. set to logical 1). The transmitted data of the
transaction is the value of the data signals at the event.

Once valid is asserted, it cannot be de-asserted (i.e., sticky signal), nor can the value
of data be changed until a transaction occurs. To prevent deadlocks, a sender must not
wait until the assertion of ready before asserting valid. To prevent combinational logic
loops, the valid signal may not combinationally depend on the ready signal.

Examples of protocol use are given in Figures 2 and 3.

4.2 Core Usage

Encryption An encryption is started by executing a transaction on the in interface.
The encryption is executed using the shared key and plaintext provided in the transac-
tion, then the out interface becomes valid, with the shared ciphertext as data.
The core can only perform one execution at a time and will not start a new encryption

before the ciphertext of the current encryption has been consumed from the out interface.
Figure 4 illustrates the interface signal for two consecutive encryptions.
Security: The out shares ciphertext is gated to not expose any confidential value

when out valid is not asserted.
Initialization: After reset, the core will not start an encryption before it is reseeded.
Latency and throughput: The AES implementation has a latency of 86 clock cycles.

To achieve the maximum throughput of one encrypted block per 86 cycles, there must be
no back-pressure (i.e., out ready must be high at the clock cycle where cipher valid

becomes asserted) and the input must be valid (valid in asserted) at least one cycle
before cipher valid is asserted.

(Re-)seeding The seed interface is used to reseed the internal PRNG (this PRNG
generates the internal masking randomness, see Section 5.5 for details). A reseed is
executed by means of a transaction on the seed interface, as shown in Figure 5. During
this transaction, the provided seed data must be uniform randomness (i.e. all the bits
must be fresh, uniform and independent). After a reseed transaction, the reseeding
procedure lasts for a few cycles (the duration depends on the core configuration, it is
typically less than a dozen cycles).
Interactions with encryption.

• After a reset, the core does not start any encryption before being reseeded once.

• The core will not accept a reseed transaction while it is encrypting.

• The core will not start an encryption while it is reseeding.

• Starting a new encryption takes precedence over starting a reseed, hence if reseed-
ing if needed, no new valid input should be asserted before a reseed transaction
happens.

5

.clk

syn rst

in shares plaintext p0 p1

in shares key k0 k1

in valid

in ready

in seed

in seed valid

in seed ready

out shares ciphertext 0 c0 0 c1 0

out valid

out ready

Figure 4: Exemplary interface view for two executions.

.clk

syn rst

in shares plaintext p0 p1 p2

in shares key k0 k1 k3

in valid

in ready

in seed s0

in seed valid

in seed ready

out shares ciphertext 0 c0 0 c1 0

out valid

out ready

Figure 5: Exemplary reseeding procedure.

6

.

d
n

(d
−
1)

n 2
n n 0

bd−1
n−1

. . . bd−1
1 bd−1

0 b1n−1
. . . b11 b10 b0n−1

. . . b01 b00

.

n
d

(n
−

1
)
d 2d d 0

bd−1
n−1

. . . b1n−1 b0n−1 bd−1
1

. . . b11 b01 bd−1
0

. . . b10 b00

n 0

bn−1 . . . b1 b0data [n− 1 : 0]

shares bits [dn− 1 : 0]

shares data [dn− 1 : 0]

Figure 6: Encoding of a shared n-bit wide data with d shares.

4.3 Sharing encoding

The busses in shares plaintext, in shares key and out shares ciphertext contain
respectively the shared representation of the plaintext, the key and the ciphertext.

A sharing (or shared representation) of a bit b is a tuple of d shares
(
b0, b1, . . . , bd−1

)
such that

⊕
m,0≤m<d b

m = b. The sharing of a n-bit bus data [n− 1 : 0] where data[i] =

bi is shares data [nd− 1 : 0] where shares data [ni+ j] = bji and
(
b0i , . . . , b

d−1
i

)
is a

sharing of bi. This representation is illustrated in Figure 6.
The key and the plaintext must be fed as uniform sharings (i.e. the sharing is selected

uniformly at random among possible sharings that represent the correct value). The
output ciphertext sharing is guaranteed to be uniform.

5 Core Architecture

The top-level architecture of aes enc128 32bits hpc2 is depicted in Figure 7: its main
components are the encryption unit MSKaes 32bits core and the PRNG. Some addi-

7

tional logic is used to handle the encrypt/reseed interlocking, as well as units to shuffle
the shares of the masked busses.

Core The module MSKaes 32bits core implements a masked version of the AES en-
cryption algorithm by serially processing 32-bits parts of the state. It runs a single AES
execution at a time and the ciphertext produced (sh ciphertext) has to be fetched
before a new execution can start. The shared plaintext (sh plaintext) and the shared
key (sh key) are fetched at the beginning of a new execution by performing a simple
transaction at the input interface (with valid in and in ready). Similarly, the shared
ciphertext (sh ciphertext) is output from the core with a dedicated interface (with
cipher valid and out ready). The signal busy is asserted when an execution is ongo-
ing inside the core.

PRNG The module prng top is generating the randomness required by the masking
scheme. It is the producer on the randomness bus, while MSKaes 32bits core is the
receiver.
When not reseeding, it takes only a single cycle to generate the fresh randomness,

therefore at the next cycle after a randomness transaction, new randomness is already
available (i.e., rnd carries fresh randomness, and out valid is asserted). During an
encryption, MSKaes 32bits core needs randomness at all clock cycles, hence it keeps
out ready asserted, and thanks to the high-throughput capability of the PRNG, a trans-
action happens on the randomness bus at every clock cycles (out valid stays asserted).

This high throughput capability is actually relied upon by MSKaes 32bits core: it
needs randomness for security at every cycle during the encryption and cannot stall once
encryption is started. The signal out valid is de-asserted only when the PRNG has not
been seeded after a reset, or while it is reseeding. To ensure that fresh randomness is al-
ways available when encrypting, the interlocking logic prevents the MSKaes 32bits core

from starting an encryption if out valid is de-asserted, while it prevents prng top

from starting a reseed when an encryption is ongoing. If no encryption is ongoing and
in seed valid is asserted, then a reseed is initiated and a transaction on the seed bus
occurs at the next cycle (this is to avoid a combinational dependency in seed valid →
in seed ready, and is achieved by detecting a rising edge on the PRNG busy signal).

Share shuffling The modules shares2shbus and shbus2shares are simple wire shuf-
flings that “transpose” the encoding of the shared data. More precisely, the encoding of a
sharing inside MSKaes 32bits core is shares data inner [ni+ j] = bij unlike the more

intuitive external representation shares data [ni+ j] = bji described in Section 4.3. This
internal representation is more convenient for the implementation, as it makes it easier
to describe the extraction of masked bits from a masked bus using Verilog operators.

5.1 Masked AES Core Architecture

The module MSKaes 32bits core is almost identical to the 32-bit masked AES im-
plementation presented in [MCS22]. As shown in Figure 8, the module is organized

8

MSKaes 32bits core

valid in

in ready

sh plaintext

sh key

busy

cipher valid

out ready

sh ciphertext

i
n
r
n
d
r
e
a
d
y

r
n
d

prng top

start reseed

in seed

busy

out valid

out ready

out rnd[68d(d-1)-1:0]

shares2shbusshbus2shares

shbus2shares

in shares plaintext[128d-1:0]

in shares key

in valid

in ready

in seed valid

in seed[79:0]

in seed ready

out valid

out ready

out shares ciphertext[128d-1:0]

Figure 7: Global architecture of the module aes enc128 32bits hpc2.

MSKaes 32bits state datapath

sh plaintext

sh 4bytes from SB sh 4bytes to SB

sh ciphertext

f
e
e
d
s
b
k
e
y

1

0 s
b
o
x
v
a
l
i
d
i
n

0

1

c
i
p
h
e
r
v
a
l
i
d

0

1

t
a
p
t
o
p
i
n
p
u
t

0

1

4× MSKSbox

bytes to SB bytes from SB

r
n
d

MSKaes 32bits key datapath

sh key sh 4bytes rot to SB

sh 4bytes rot from SB

s
h
4
b
y
t
e
s
t
o
A
K

t
a
p
t
o
p
i
n
p
u
t

0

1 0

0

0

0

sh plaintext[128d-1:0]

sh key[128d-1:0]

sh ciphertext[128d-1:0]

r
n
d

Figure 8: Datapath architecture of the module MSKaes 32bits core. Wires not in bold
are 32d bits wide (apart from muxes control signals).

9

around two datapath blocks performing the operations dedicated to the round com-
putation (denoted MSKaes 32bits state datapath) and the key scheduling (denoted
MSKaes 32bits key datapath). The module MSKSbox is shared between the two dat-
apath blocks and implements the SubBytes layer for 4 masked bytes. In particular,
it is composed of 4 parallel instances of the masked S-boxes implementation presented
in [CGM+24] that relies on the representation presented in [Can05].
The S-boxes have been generated using COMPRESS, and are thus optimised for a

given amount of shares. The amount of shares implemented in a practical integration
can be modified at synthesis time by changing the generic d at the top level. However, a
mismatch between the amount of shares instanciated and the amount of shares specified
during the S-box generation with COMPRESS may lead to sub-optimal performance
(i.e., area). In this document, we report the results for four different protection levels,
namely d ∈ [2, 3, 4, 5]. If another amount of shares is required, it is advised to gener-
ate an optimal S-box implementation using COMPRESS2. A single S-box is organized
as a pipeline of 4 stages that requires 36 random bits (resp. 96, 192 and 300) per
execution considering d = 2 (resp. 3, 4 and 5). The bus rnd is used to provide the
fresh randomness to the 4 S-boxes instances (randomness is not used anywhere else in
MSKaes 32bits core).

5.2 Architecture of the MSKaes 32bits state datapath module

Figure 9 shows the detailed architecture of the module MSKaes 32bits state datapath.
It is organized as a shift register where each register unit holds a masked state byte
(the numbers on the figure indicate the byte index in the unmasked state). The module
operates on 32-bit parts of the state and is also implementing the logic that computes the
AddRoundKey, ShiftRows and MixColumns layers. In particular, these are implemented
in purely combinational logic. Addition gadgets (i.e., XORs) are used to perform the key
addition with key bytes coming from the round key (denoted sh 4bytes from key). The
module MC unit computes the result of the MixColumns operation for a masked column
(i.e., 4 masked bytes). The ShiftRows layer is free, being implemented as a specific
routing at the input of the SubBytes layer. In particular, the ordering of the bytes routed
to the S-boxes (denoted sh 4bytes to SB) is selected such that the rotations over the
rows are applied. Dedicated MUXes (controlled by route MC) are used in order to bypass
the MixColumns logic block when executing the last round. Other MUXes (controlled by
loop) are used during the last key addition in order to bypass the ShiftRows, SubBytes
and MixColumns layers. When a new execution starts, the masked plaintext bytes are
loaded in the register through the MUXes controlled by init. Then, the AddRoundKey

and ShiftRows layers are executed by propagating the data across the pipeline to the
S-boxes. The MixColumns operation is performed when the result of the SubBytes layer
is coming back to the core by asserting the signal route MC.

10

12

i
n
i
t

1

0

sh plaintext[104d− 1 : 96d]

13

i
n
i
t

1

0

sh plaintext[112d− 1 : 104d]

14

i
n
i
t

1

0

sh plaintext[120d− 1 : 112d]

15

i
n
i
t

1

0

sh plaintext[128d− 1 : 120d]

8

i
n
i
t

1

0

sh plaintext[72d− 1 : 64d]

9

i
n
i
t

1

0

sh plaintext[80d− 1 : 72d]

10

i
n
i
t

1

0

sh plaintext[88d− 1 : 80d]

11

i
n
i
t

1

0

sh plaintext[96d− 1 : 88d]

4

i
n
i
t

1

0

sh plaintext[40d− 1 : 32d]

5

i
n
i
t

1

0

sh plaintext[48d− 1 : 40d]

6

i
n
i
t

1

0

sh plaintext[56d− 1 : 48d]

7

i
n
i
t

1

0

sh plaintext[64d− 1 : 56d]

0

i
n
i
t

1

0

sh plaintext[8d− 1 : 0d]

1

i
n
i
t

1

0

sh plaintext[16d− 1 : 8d]

2

i
n
i
t

1

0

sh plaintext[24d− 1 : 16d]

3

i
n
i
t

1

0

sh plaintext[32d− 1 : 24d]

sh 4bytes from key[8d− 1 : 0d]

0

l
o
o
p

0

1

sh 4bytes to SB[8d : 0d]

sh 4bytes from key[16d− 1 : 8d]

0

l
o
o
p

0

1

sh 4bytes to SB[16d : 8d]

sh 4bytes from key[24d− 1 : 16d]

0

l
o
o
p

0

1

sh 4bytes to SB[24d : 16d]

sh 4bytes from key[32d− 1 : 24d]

0

l
o
o
p

0

1

sh 4bytes to SB[32d : 24d]

l
o
o
p

0

1

r
o
u
t
e
M
C

0

1

l
o
o
p

0

1

r
o
u
t
e
M
C

0

1

l
o
o
p

0

1
r
o
u
t
e
M
C

0

1

l
o
o
p

0

1

r
o
u
t
e
M
C

0

1

MC unit

a0 b0

a1 b1

a2 b2

a3 b3

sh 4bytes from SB[8d− 1 : 0d] fromMC[8d− 1 : 0d]

sh 4bytes from SB[8d− 1 : 0d]

fromMC[8d− 1 : 0d]

sh 4bytes from SB[16d− 1 : 8d] fromMC[16d− 1 : 8d]

sh 4bytes from SB[16d− 1 : 8d]

fromMC[16d− 1 : 8d]

sh 4bytes from SB[24d− 1 : 16d] fromMC[24d− 1 : 16d]

sh 4bytes from SB[24d− 1 : 16d]

fromMC[24d− 1 : 16d]

sh 4bytes from SB[32d− 1 : 24d] fromMC[32d− 1 : 24d]

sh 4bytes from SB[32d− 1 : 24d]

fromMC[32d− 1 : 24d]

Figure 9: Global architecture of the MSKaes 32bits state datapathmodule. The value
held by the DFF at index i is depicted by the signal sh reg out[i] in the
HDL.

11

12

(8)

13

(9)

14

(10)

15

(11)

8

(4)

9

(5)

10

(6)

11

(7)

4

(0)

5

(1)

6

(2)

7

(3)

0

(12)

1

(13)

2

(14)

3

(15)

i
n
i
t
|
|
l
o
o
p

1

0

l
o
o
p

0

1

f
r
o
m
S
B

1

0

sh key[104d− 1 : 96d]

i
n
i
t
|
|
l
o
o
p

1

0

l
o
o
p

0

1

f
r
o
m
S
B

1

0

sh key[112d− 1 : 104d]

i
n
i
t
|
|
l
o
o
p

1

0

l
o
o
p

0

1

f
r
o
m
S
B

1

0

sh key[120d− 1 : 112d]

i
n
i
t
|
|
l
o
o
p

1

0

l
o
o
p

0

1

f
r
o
m
S
B

1

0

sh key[128d− 1 : 120d]

sh 4bytes rot to SB[32d− 1 : 24d]

sh 4bytes rot to SB[8d− 1 : 0d]

sh 4bytes rot to SB[16d− 1 : 8d]

sh 4bytes rot to SB[24d− 1 : 16d]

sh key[8d− 1 : 0d]

i
n
i
t

1

0

sh key[40d− 1 : 32d]

i
n
i
t

1

0

sh key[16d− 1 : 8d]

i
n
i
t
1

0

sh key[48d− 1 : 40d]

i
n
i
t

1

0

sh key[24d− 1 : 16d]

i
n
i
t

1

0

sh key[56d− 1 : 48d]

i
n
i
t

1

0

sh key[32d− 1 : 24d]

i
n
i
t

1

0

sh key[64d− 1 : 56d]

i
n
i
t

1

0

RCONsh 4bytes rot from SB[8d− 1 : 0d]

sh 4bytes rot from SB[16d− 1 : 8d]

sh 4bytes rot from SB[24d− 1 : 16d]

sh 4bytes rot from SB[32d− 1 : 24d]

sh 4bytes to AK[8d− 1 : 0d]

sh 4bytes to AK[16d− 1 : 8d]

sh 4bytes to AK[24d− 1 : 16d]

sh 4bytes to AK[32d− 1 : 24d]

i
n
i
t

1

0

sh key[72d− 1 : 64d]

i
n
i
t

1

0

sh key[80d− 1 : 72d]

i
n
i
t

1

0

sh key[88d− 1 : 80d]

i
n
i
t

1

0

sh key[96d− 1 : 88d]

Figure 10: Global architecture of the module MSKaes 32bits key datapath. The value
held by the DFF at index i is depicted by the signal sh m key[i] in the HDL.

12

5.3 Architecture of the MSKaes 32bits key datapath module

The module MSKaes 32bits key datapath is shown in Figure 10. It is organized as a
shift register where each register unit holds a masked byte of the key. The module is
split in 4 independent parts, each taking care of the key scheduling operation on a single
row. The sharing of the 128-bit key is routed from the input with the control signal
init. Two relevant bytes ordering are depicted on the Figure and both refers to the
byte index in the unmasked key. First, the number on the top depict the byte ordering
at the beginning of a round when the key addition occurs. Second, the bottom number
(between parentheses) depict the byte ordering when a fresh execution starts, at the last
cycle of a round or when the SubBytes layer results of the key scheduling are fetch back
from the S-boxes, as detailed next. In practice, the second ordering corresponds to the
first one with a rotation of 1 column to the left.
Concretely, the key scheduling starts by sending the last column of the key (i.e., byte

indexes 12, 13, 14 and 15) to the S-boxes. The RotWord operation is performed by
the routing that sends the key bytes to the S-boxes. Once computed, the result of the
SubBytes layer is routed back to the core through the MUX controlled by the signal
from SB. At the same time, the round constant is applied and the first column (i.e.,
byte indexes 0,1,2 and 3) of the new key is computed by adding its value to the column
coming back from the S-boxes. The remaining three columns (i.e., byte indexes [4,5,6,7],
[8,9,10,11] and [12,13,14,15] are then updated sequentially by XORing each bytes with
the value of the last byte updated in the same row. The signal loop is used to make
the key shares loop across the key pipeline. This is required to keep the key material
after the AddRoundKey operations while the SubBytes results of the key scheduling is
still under computation.

5.4 Internal operation

Let us first introduce notations for the intermediate states in the AES algorithm with
pseudo-code in Figure 11 and Figure 12. Each variable denotes a state or subkey byte
at a given step of the algorithm. In particular, the plaintext (resp. key, ciphertext) byte
at index 0 ≤ i < 16 is denoted Pi (resp. Ki, Ci), and the value Sri (resp. RKri) denotes the
byte at index i of the state (resp. round key) starting the r-th round. When no index is
given, the full 128-bit state is considered instead.
Using these notations, Figures 13, 14 and 15 describe the evolution of the AES states

stored in the architecture over the computation of one round. Next, Figures 16, 17
and 18 depict the control signals that drive the datapath for the first round, middle
rounds, and last round. In particular, for the first round (Figure 16), the data is fetched
by the module when the signal valid in is asserted if the core is not busy, there is no
ciphertext stored in the core and randomness is available. At the next clock cycle, the
internal FSM counters cnt round and cnt fsm are reset and the execution begins. The
round function and the key scheduling algorithm are executed in parallel by interleaving
the S-boxes usage appropriately. In particular, the first cycle of the execution is used to

2Please refer to https://github.com/cassiersg/compress artifact for more info

13

https://github.com/cassiersg/compress_artifact

%%% First key addition

for 0 ≤ i < 16 do

S0i = Pi ⊕ Ki;

done

%%% Perform the rounds

for 0 ≤ r < 9 do

% Operation for a single round

SRr = ShiftRows(Sr);
SBr = SubBytes(SRr);
MCr = MixColumns(SBr);
AKr = AddRoundKey(MCr, RKr);
Sr+1 = AKr;

done

%%% Last round

SR9 = ShiftRows(S9);
SB9 = SubBytes(SR9);
AK9 = AddRoundKey(SB9);
C = AK9;

Figure 11: Pseudo-code of the AES encryption.

start the key scheduling algorithm by asserting feed sb key and sbox valid in. During
this cycle, the module MSKaes 32bits key datapath is enabled and the loop (rotating
then the columns), while the module MSKaes 32bits state datapath is disabled.

Then, the core enters into a nominal regime that computes a round in 8 cycles, as
depicted in Figure 17. A typical round starts with 4 clock cycles during which data is read
from the state registers, XORed with the subkey and fed to the S-boxes, which performs
the AddRoundKey, ShiftRows and SubBytes layers for the full state (one column per
cycle). During these cycles, sbox valid in is asserted and data (state and subkey) loops
over the shift registers. An exception occurs at the fourth cycle (i.e., when cnt fsm = 3):
at this cycle, the S-boxes output the column of the new subkey value, which is processed
by deasserting loop. Next, during the last 4 cycles of a round, the S-boxes output the
4 columns of the state, on which the MixColumns layer is directly applied, and the result
is stored in the state registers. At the same time, the subkey update is finalized, such
that a new subkey is ready at the last cycle of a round (i.e., cnt fsm = 7). During this
last cycle, the next key schedule round is started, and a new state round starts at the
following cycle.
Finally, the last round is very similar to the regime mode except that the module

MC unit is bypassed. In particular, the signal route MC is de-asserted and the shift
registers are configured to make the data loop. No new key scheduling round is started
during this last cycle. At the end of the last round, once the ciphertext has been fetched
from the output, a new encryption starts immediately (if valid in is asserted), or the
state register is cleared by asserting the control signal init. This ensures that the core
is completely clear of any key- or plaintext-dependent data.

14

%%% Key evolution for each round key

for 0 ≤ r < 10 do

% Fetch value on which operate

if r == 0 then

tr = K;

else

tr = RKr−1;

end

% Perform the last column rotation

[Rr0, R
r
1, R

r
2, R

r
3] = [tr13, t

r
14, t

r
15, t

r
12];

% Perform SubWord on the rotated column

[RSBr0, RSB
r
1, RSB

r
2, RSB

r
3] = [SubWord(Rr0), SubWord(R

r
1), SubWord(R

r
2), SubWord(R

r
3)]

% Compute the first column of the next round key

RKr0 = RSBr0 ⊕ tr0 ⊕ RCONr;

RKr1 = RSBr1 ⊕ tr1;
RKr2 = RSBr2 ⊕ tr2;
RKr3 = RSBr3 ⊕ tr3;

% Generate the three remaining columns

for 1 ≤ i < 4 do

for 0 ≤ j < 4 do

RKr4i+j = RKr4(i−1)+j ⊕ tr4i+j;

done

done

done

Figure 12: Pseudo-code for the AES key evolution.

15

clk

cnt round i− 1 i i+ 1

cnt fsm 7 8 9 0 1 2 3 4 5 6 7 0 1

bytes to SB[8d− 1 : 0] 0 RKi−1
13

Si0 Si4 Si8 Si12 0 RKi13 Si+1
0 Si+1

4

bytes to SB[16d− 1 : 8d] 0 RKi−1
14

Si5 Si9 Si13 Si1 0 RKi14 Si+1
5 Si+1

9

bytes to SB[24d− 1 : 16d] 0 RKi−1
15

Si10 Si14 Si2 Si6 0 RKi15 Si+1
10 Si+1

14

bytes to SB[32d− 1 : 24d] 0 RKi−1
12

Si15 Si3 Si7 Si11 0 RKi12 Si+1
15 Si+1

3

bytes from SB[8d− 1 : 0] SBi−1
8 SBi−1

12
RSBi0 SBi0 SBi4 SBi8 SBi12

bytes from SB[16d− 1 : 8d] SBi−1
9 SBi−1

13
RSBi1 SBi1 SBi5 SBi9 SBi13

bytes from SB[24d− 1 : 16d] SBi−1
10 SBi−1

14
RSBi2 SBi2 SBi6 SBi10 SBi14

bytes from SB[32d− 1 : 24d] SBi−1
11 SBi−1

15
RSBi3 SBi3 SBi7 SBi11 SBi15

Figure 13: Data going into / coming from the S-boxes during a round.

5.5 Randomness Generation

The module prng top is a PRNG generating all the pseudo-random bits required by
the S-boxes in a single clock cycle, denoted next NRNDBITS. Following the recommen-
dation from [CMM+24], it is based on one or multiple instances of the Trivium stream
cipher [CP08] from which the key stream is used as the PRNG output. As shown in
Figure 19, a Trivium instance is implemented using a 288-bit state register and UNROLL

cascaded combinational layers that each implement one state update step and produce
one keystream bit. Moreover, the state register is either taken from a reseed value (to
initiate a reseed), or from the output of the final update step (during normal operation).
At the output, the keystream is stored in a register to avoid the propagation of glitches
that could reduce the security of the masked circuit.
The use of multiple Trivium instances allows us to adjust the area-latency trade-

off: with more Trivium instances, UNROLL can be reduced, leading to a lower combi-
national logic depth. The top-level PRNG MAX UNROLL parameter is used for this pur-
pose: the number of instances is NTRIVIUMS = ⌈NRNDBITS/PRNG MAX UNROLL⌉, and
UNROLL = ⌈NRNDBITS/NTRIVIUMS⌉, which ensures that UNROLL ≤ PRNG MAX UNROLL.

The reseeding follows the initialization of Trivium. Concretely, the state is first set
to 13|0112|IV|013|KEY, where the KEY is set to the 80-bit externally provided seed (it is
the same for all Trivium instances), while the IV is a constant, which is distinct for
each Trivium instance. Then, the update function is applied at least 4 · 288 times, i.e.,
the PRNG is executed while feeding back its state for 4 · 288/UNROLL cycles. During
the reseed, the signal busy is asserted and out valid is not. Once finished, the signal
out valid is asserted. After a reset, the core requires will not output valid data (i.e.,

16

clk

cnt round i− 1 i i+ 1

cnt fsm 6 7 0 1 2 3 4 5 6 7 0 1

sh m key[0] RKi−1
12 RKi−1

0 RKi−1
4 RKi−1

8 RKi−1
12

RKi0 RKi4 RKi8 RKi12 RKi0 RKi4

sh m key[1] RKi−1
13 RKi−1

1 RKi−1
5 RKi−1

9 RKi−1
13

RKi1 RKi5 RKi9 RKi13 RKi1 RKi5

sh m key[2] RKi−1
14 RKi−1

2 RKi−1
6 RKi−1

10 RKi−1
14

RKi2 RKi6 RKi10 RKi14 RKi2 RKi6

sh m key[3] RKi−1
15 RKi−1

3 RKi−1
7 RKi−1

11 RKi−1
15

RKi3 RKi7 RKi11 RKi15 RKi3 RKi7

sh m key[4] RKi−1
0 RKi−1

4 RKi−1
8 RKi−1

12 RKi−1
0 RKi−1

4 RKi−1
8 RKi−1

12
RKi0 RKi4 RKi8

sh m key[5] RKi−1
1 RKi−1

5 RKi−1
9 RKi−1

13 RKi−1
1 RKi−1

5 RKi−1
9 RKi−1

13
RKi1 RKi5 RKi9

sh m key[6] RKi−1
2 RKi−1

6 RKi−1
10 RKi−1

14 RKi−1
2 RKi−1

6 RKi−1
10 RKi−1

14
RKi2 RKi6 RKi10

sh m key[7] RKi−1
3 RKi−1

7 RKi−1
11 RKi−1

15 RKi−1
3 RKi−1

7 RKi−1
11 RKi−1

15
RKi3 RKi7 RKi11

sh m key[8] RKi−1
4 RKi−1

8 RKi−1
12 RKi−1

0 RKi−1
4 RKi−1

8 RKi−1
12

RKi0 RKi4 RKi8 RKi12

sh m key[9] RKi−1
5 RKi−1

9 RKi−1
13 RKi−1

1 RKi−1
5 RKi−1

9 RKi−1
13

RKi1 RKi5 RKi9 RKi13

sh m key[10] RKi−1
6 RKi−1

10 RKi−1
14 RKi−1

2 RKi−1
6 RKi−1

10 RKi−1
14

RKi2 RKi6 RKi10 RKi14

sh m key[11] RKi−1
7 RKi−1

11 RKi−1
15 RKi−1

3 RKi−1
7 RKi−1

11 RKi−1
15

RKi3 RKi7 RKi11 RKi15

sh m key[12] RKi−1
8 RKi−1

12 RKi−1
0 RKi−1

4 RKi−1
8 RKi−1

12
RKi0 RKi4 RKi8 RKi12 RKi0

sh m key[13] RKi−1
9 RKi−1

13 RKi−1
1 RKi−1

5 RKi−1
9 RKi−1

13
RKi1 RKi5 RKi9 RKi13 RKi1

sh m key[14] RKi−1
10 RKi−1

14 RKi−1
2 RKi−1

6 RKi−1
10 RKi−1

14
RKi2 RKi6 RKi10 RKi14 RKi2

sh m key[15] RKi−1
11 RKi−1

15 RKi−1
3 RKi−1

7 RKi−1
11 RKi−1

15
RKi3 RKi7 RKi11 RKi15 RKi3

Figure 14: Data going into / coming from the key scheduling datapath during a round.

17

clk

cnt round i− 1 i i+ 1

cnt fsm 7 8 9 0 1 2 3 4 5 6 7 0 1

sh reg out[0] Si−1
8 Si−1

12 MCi−1
0 MCi−1

4 MCi−1
8 MCi−1

12
Si0 Si4 Si8 Si12 MCi0 MCi4

sh reg out[1] Si−1
9 Si−1

13 MCi−1
1

Si5 Si9 Si13 Si1 Si5 Si9 Si13 MCi1 Si+1
5

sh reg out[2] Si−1
10 Si−1

14 MCi−1
2 MCi−1

6
Si10 Si14 Si2 Si6 Si10 Si14 MCi2 MCi6

sh reg out[3] Si−1
11 Si−1

15 MCi−1
3 MCi−1

7 MCi−1
11

Si15 Si3 Si7 Si11 Si15 MCi3 MCi7

sh reg out[4] Si−1
12 MCi−1

0 MCi−1
4 MCi−1

8 MCi−1
12

Si0 Si4 Si8 Si12 MCi0 MCi4 MCi8

sh reg out[5] Si−1
13 MCi−1

1 MCi−1
5 MCi−1

9 MCi−1
13 MCi−1

1
Si5 Si9 Si13 MCi1 MCi5 MCi9

sh reg out[6] Si−1
14 MCi−1

2 MCi−1
6

Si10 Si14 Si2 Si6 Si10 Si14 MCi2 MCi6 Si+1
10

sh reg out[7] Si−1
15 MCi−1

3 MCi−1
7 MCi−1

11
Si15 Si3 Si7 Si11 Si15 MCi3 MCi7 MCi11

sh reg out[8] MCi−1
0 MCi−1

4 MCi−1
8 MCi−1

12
Si0 Si4 Si8 Si12 MCi0 MCi4 MCi8 MCi12

sh reg out[9] MCi−1
1 MCi−1

5 MCi−1
9 MCi−1

13 MCi−1
1

Si5 Si9 Si13 MCi1 MCi5 MCi9 MCi13

sh reg out[10] MCi−1
2 MCi−1

6 MCi−1
10 MCi−1

14 MCi−1
2 MCi−1

6
Si10 Si14 MCi2 MCi6 MCi10 MCi14

sh reg out[11] MCi−1
3 MCi−1

7 MCi−1
11

Si15 Si3 Si7 Si11 Si15 MCi3 MCi7 MCi11 Si+1
15

sh reg out[12] MCi−1
4 MCi−1

8 MCi−1
12

Si0 Si4 Si8 Si12 MCi0 MCi4 MCi8 MCi12 Si+1
0

sh reg out[13] MCi−1
5 MCi−1

9 MCi−1
13 MCi−1

1
Si5 Si9 Si13 MCi1 MCi5 MCi9 MCi13 MCi1

sh reg out[14] MCi−1
6 MCi−1

10 MCi−1
14 MCi−1

2 MCi−1
6

Si10 Si14 MCi2 MCi6 MCi10 MCi14 MCi2

sh reg out[15] MCi−1
7 MCi−1

11 MCi−1
15 MCi−1

3 MCi−1
7 MCi−1

11
Si15 MCi3 MCi7 MCi11 MCi15 MCi3

Figure 15: Data going into / coming from the round function datapath during a round.

18

clk

cnt cycles 0 0 1 2 3 4 5 6 7 8 9 10

cnt round 0 0 1

cnt fsm 0 0 1 2 3 4 5 6 7 0 1

MSKaes 32bits core

valid in

busy

tap top input

feed sb key

sbox valid in

sbox valid out

cipher valid

MSKaes 32bits state datapath

state enable

init

loop

route MC

MSKaes 32bits key datapath

KH enable

init

loop

from SB

Figure 16: Data routing when a new execution starts.

19

clk

cnt cycles 30 31 32 33 34 35 36 37 38 39 40 41 42

cnt round 3 4 5

cnt fsm 5 6 7 0 1 2 3 4 5 6 7 0 1

MSKaes 32bits core

tap top input

feed sb key

sbox valid in

sbox valid out

cipher valid

MSKaes 32bits state datapath

state enable

init

loop

route MC

MSKaes 32bits key datapath

KH enable

init

loop

from SB

Figure 17: In regime data routing.

20

clk

cnt cycles 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

cnt round 8 9 A

cnt fsm 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5

MSKaes 32bits core

busy

cipher valid

tap top input

feed sb key

sbox valid in

sbox valid out

cipher valid

MSKaes 32bits state datapath

state enable

init

loop

route MC

MSKaes 32bits key datapath

KH enable

init

loop

from SB

Figure 18: Data routing during last rounds.

21

Trivium update

z

in out Trivium update

z

in out Trivium update

z

in out

z1 z2 zUNROLL

1|1|1|0112|IV[79 : 0]|013|key[79 : 0]

stream[UNROLL− 1 : 0]

Figure 19: Datapath Architecture of a unrolled Trivium module

Design Latency Shares Area (kGE)

SMAesH v1.1 86

2 24.4
3 47.4
4 81.2
5 120.0

Table 2: NanGate45 PDK synthesis results,
post-synthesis, from [CGM+24]

out valid will stay de-asserted) until the completion of a reseed.

6 Core Performances

Following the architecture described section 5.2, the latency is 86 cycles per execution.
Table 2 contains post-synthesis implementation metrics obtained with Yosys for the
NanGate45 Open Cell Library.

7 Core Verification

Functionality In order to ensure the proper functionality of the AES core, the Known-
Answer Tests of the NIST “Advanced Encryption Standard Algorithm Validation List”
is verified with the provided testbench3.
In particular, all the testvectors related to the encryption algorithm from the files

ECBGFSbox128.rsp, ECBKeySbox128.rsp, ECBVarKey128.rsp and ECBVarTxt128.rsp

3https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/block-ciphers

22

are tested at the RTL level. The testbench follows a randomized regression testing
strategy to assess the functionality of the module. In particular, the execution related
to each testvector cases is started sequentially by performing a transaction at the input
interface. To simulate the behavior that may happen due to the integration of the core
in a more complex system, a random amount of clock cycles is waited before initializing
a transaction (i.e., before asserting the in valid signal). Similarly, in order to simu-
late (hard) back-pressure conditions that may occur in practice, the output interface is
simulated with random assertion of the out ready signal. Besides, in parallel to the be-
havioral known-answer tests, the reseeding procedure is tested by issuing reseed requests
at regular interval. This is achieved by waiting a random amount of clock cycles before
asserting the signal in seed valid and waiting until a transaction at the seed interface
occurs.
Additionally, a practical implementation on an Artix7 FPGA (xc7a100tftg256-2) has

been tested with random known-test vectors (i.e., random key, plaintext and seed) for
cores below version 1.1 (not included).

Side-channel security This core has been formally verified for security in the glitch+transition
robust probing model using the fullVeriftool [CGLS21, CS21]4. The scripts for this
verification are provided along with the implementation. An implementation of the ver-
sion 1.0.1 has also been empirically evaluated on an FPGA (with synthesis optimizations
disabled), the evaluation report is available at https://simple-crypto.org/outputs.
The latter also undergone a public evaluation in the context of the CHES23 challenge5.
Note that this evaluation is device-specific, and should be performed on every instanti-
ation of this device.

8 Copyright

This document is Copyright (c) SIMPLE-Crypto contributors (see https://github.

com/simple-crypto/SMAesH).
Permission is granted to copy, distribute and/or modify this document under the terms

of the GNU Free Documentation License, Version 1.3 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is available with the sources of the
implementation and at https://www.gnu.org/licenses/fdl-1.3.txt.

References

[Can05] David Canright. A very compact s-box for AES. In CHES, volume 3659 of
Lecture Notes in Computer Science, pages 441–455. Springer, 2005.

4https://github.com/cassiersg/fullverif
5https://smaesh-challenge.simple-crypto.org/

23

https://simple-crypto.org/outputs
https://github.com/simple-crypto/SMAesH
https://github.com/simple-crypto/SMAesH
https://www.gnu.org/licenses/fdl-1.3.txt
https://github.com/cassiersg/fullverif
https://smaesh-challenge.simple-crypto.org/

[CGLS21] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Stan-
daert. Hardware private circuits: From trivial composition to full verifica-
tion. IEEE Trans. Computers, 70(10):1677–1690, 2021.

[CGM+24] Gaëtan Cassiers, Barbara Gigerl, Stefan Mangard, Charles Momin, and
Rishub Nagpal. Compress: Generate small and fast masked pipelined cir-
cuits. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2024(3):500–529, 2024.

[CMM+24] Gaëtan Cassiers, Löıc Masure, Charles Momin, Thorben Moos, Amir
Moradi, and François-Xavier Standaert. Randomness generation for secure
hardware masking – unrolled trivium to the rescue. IACR Communications
in Cryptology, 1(2), 2024.

[CP08] Christophe De Cannière and Bart Preneel. Trivium. In Matthew J. B.
Robshaw and Olivier Billet, editors, New Stream Cipher Designs - The eS-
TREAM Finalists, volume 4986 of Lecture Notes in Computer Science, pages
244–266. Springer, 2008.

[CS21] Gaëtan Cassiers and François-Xavier Standaert. Provably secure hardware
masking in the transition- and glitch-robust probing model: Better safe than
sorry. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):136–158, 2021.

[KM22] David Knichel and Amir Moradi. Low-latency hardware private circuits. In
CCS, pages 1799–1812. ACM, 2022.

[MCS22] Charles Momin, Gaëtan Cassiers, and François-Xavier Standaert. Hand-
crafting: Improving automated masking in hardware with manual optimiza-
tions. In COSADE, volume 13211 of Lecture Notes in Computer Science,
pages 257–275. Springer, 2022.

[NIS01] NIST. Advanced Encryption Standard (AES), 2001.

24

	Overview
	History
	Features
	Core User Guide
	SVRS protocol
	Core Usage
	Sharing encoding

	Core Architecture
	Masked AES Core Architecture
	Architecture of the MSKaes_32bits_state_datapath module
	Architecture of the MSKaes_32bits_key_datapath module
	Internal operation
	Randomness Generation

	Core Performances
	Core Verification
	Copyright

